53 research outputs found

    Activated Magnetospheres of Magnetars

    Full text link
    Like the solar corona, the external magnetic field of magnetars is twisted by surface motions of the star. The twist energy is dissipated over time. We discuss the theory of this activity and its observational status. (1) Theory predicts that the magnetosphere tends to untwist in a peculiar way: a bundle of electric currents (the "j-bundle") is formed with a sharp boundary, which shrinks toward the magnetic dipole axis. Recent observations of shrinking hot spots on magnetars are consistent with this behavior. (2) Continual discharge fills the j-bundle with electron-positron plasma, maintaining a nonthermal corona around the neutron star. The corona outside a few stellar radii strongly interacts with the stellar radiation and forms a "radiatively locked" outflow with a high e+- multiplicity. The locked plasma annihilates near the apexes of the closed magnetic field lines. (3) New radiative-transfer simulations suggest a simple mechanism that shapes the observed X-ray spectrum from 0.1 keV to 1 MeV: part of the thermal X-rays emitted by the neutron star are reflected from the outer corona and then upscattered by the inner relativistic outflow in the j-bundle, producing a beam of hard X-rays.Comment: 23 pages, 7 figures; review chapter in the proceedings of ICREA Workshop on the High-Energy Emission from Pulsars and Their Systems, Sant Cugat, Spain, April 201

    Astrobiological Complexity with Probabilistic Cellular Automata

    Full text link
    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo

    Shklovsky, Iosif Samuilovich

    No full text

    VSOP, A Space VLBI Programme

    No full text

    The Galactic Structure and the Appearance of the Milky Way

    No full text

    THE COMPACT RADIO STRUCTURE OF THE HIGH REDSHIFT QUASARS 0642+449, 1402+044, 1614+051

    No full text
    In the first stage of an investigation of possible cosmological evolution effects in the compact radio structure of quasars, we have used a combined European and US VLBI network to image the milliarcsec scale morphology of three quasars with redshifts greater than 3. The sources 0642 + 449 (z = 3.406) and 1402 + 044 (z = 3.208) display weak distorted jets, while 1614 + 051 (z = 3.212) is slightly resolved. The jets in 0642 + 449 and 1402 + 044 are the most distant known in the universe

    Phenomena at the Galactic Centre — A Massive Black Hole?

    No full text
    corecore